Erratum to: "Fast quantum codes based on Pauli block Jacket matrices"

نویسندگان

  • Ying Guo
  • Moon Ho Lee
چکیده

Jacket matrices motivated by the center weight Hadamard matrices have played an important role in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a design approach for the Pauli block jacket matrix achieved by substituting some Pauli matrices for all elements of common matrices. Since, the well-known Pauli matrices have been widely utilized for quantum information processing, the large-order Pauli block jacket matrix that contains commutative row operations are investigated in detail. After that some special Abelian groups are elegantly generated from any independent rows of the yielded Pauli block jacket matrix. Finally, we show how the Pauli block jacket matrix can simplify the coding theory of quantum error-correction. The quantum codes we provide do not require the dual-containing constraint necessary for the standard quantum errorcorrection codes, thus allowing us to construct quantum codes of the large codeword length. The proposed codes can be constructed structurally by using the stabilizer formalism of Abelian groups whose generators are selected from the row operations of the Pauli block jacket matrix, and hence have advantages of being fast constructed with the asymptotically good behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast circulant block Jacket transform based on the Pauli matrices

Owing to its orthogonality, simplicity of the inversion and fast algorithms, Jacket transform generalising from the Hadamard transform has played important roles in signal and image processing, mobile communication for coding design, cryptography, etc. In this paper, inspired by the emerging block Jacket transform, a new class of circulant block Jacket matrices (CBJMs) are mathematically define...

متن کامل

Arikan and Alamouti matrices based on fast block-wise inverse jacket transform

Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to ...

متن کامل

Is A Quantum Stabilizer Code Degenerate or Nondegenerate for Pauli Channel?

core of quantum decoding network and is also the key step of recovery. The definitions of the bit-flip error syndrome matrix and the phase-flip error syndrome matrix were presented, and then the error syndromes of quantum errors were expressed in terms of the columns of the bit-flip error syndrome matrix and the phase-flip error syndrome matrix. It also showed that the error syndrome matrices o...

متن کامل

An explicit construction of fast cocyclic jacket transform on the finite field with any size

An orthogonal cocyclic framework of the block-wise inverse Jacket transform (BIJT) is proposed over the finite field. Instead of the conventional block-wise inverse Jacket matrix (BIJM), we investigate the cocyclic block-wise inverse Jacket matrix (CBIJM), where the high-order CBIJM can be factorized into the low-order sparse CBIJMs with a successive block architecture. It has a recursive fashi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information Processing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009